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Kolmogorov-Landau Functions

Alexander P. Goncharov

A form of the Kolmogorov-Landau inequality that can be applied to any
perfect set is suggested.

1. Introduction

The classical Kolmogorov inequality

‖f (q)‖ ≤ Crq ‖f‖
1−q/r ‖f (r)‖q/r

was proved by Kolmogorov in [11] for f ∈W r
∞(R). Here ‖ · ‖ means ‖ · ‖L∞(R)

and the sharp constant Crq = Kr−qK
−1+q/r
r is given in terms of the Favard

constants Kp := 4
π

∑∞

n=0

[ (−1)n

2n+1

]p+1
. For the definition of the Sobolev space

W r
∞(R) see e.g. [4, Ch. 1.5]. The first results of this type (the case q = 1, r = 2)

were obtained by Hadamard in [9] and by Landau in [12] (for ‖ · ‖L∞(R+)),
who initiated this class of extremal problems. Shilov [14] found the exact
constants in the case r ≤ 4, q ≤ r and predicted the class of extremal functions
(Euler’s splines) for the inequality in the general case. His conjecture was
confirmed by A. N. Kolmogorov. After that, inequalities of Kolmogorov type,
especially versions for a finite interval, attracted attention of many authors.
For a contribution by Bojanov, see [1, 2, 3].

Let us consider the additive form of the Kolmogorov inequality

‖f (q)‖ ≤ tq/(r−q) ‖f‖ +
C

t
‖f (r)‖, ∀t > 0. (1)

In order to get the sharp inequality (1), one has to take C with

Cq = Crrq q
q (r − q)r−q r−r, (2)

as is easy to check.
The exponent q

r−q of t in (1) cannot be reduced at the expense of C. Indeed,

let ϕ satisfy the condition lim t→∞ ϕ(t) t−q/(r−q) = 0. Then for any fixed C the



A. Goncharov 119

function f(x) = sin(Anx) with a suitable An and n large enough violates the
inequality

‖f (q)‖ ≤ ϕ(t) ||f || +
C

t
‖f (r)‖ (3)

for some t. Therefore the function ϕq,r,R(t) = tq/(r−q) gives the minimal
possible growth of ϕ in (3).

Our aim is to generalize (3) so that in its new form it can be applied to
classes W r

∞(F ) for closed subsets of R or for more general function spaces.

2. Kolmogorov-Landau Functions

Let F be a compact subset of R. Then, for any function of the set Φ :=
{ϕ : ϕ ∈ C([0,∞)) with ϕ ↑ and ϕ(0) = 0} and any constant C one can
easily find a polynomial f that destroys (3). We want to consider interpolating
inequalities in classes of functions containing, at least, polynomials, so let us
replace ‖f (r)‖ by ‖f‖r := max0≤k≤r ‖f

(k)‖.
Thus we arrive at the following definition: given a perfect set F ⊂ R and

1 ≤ q ≤ r − 1, we say that a function ϕ ∈ Φ is a (q, r)-Kolmogorov-Landau
function for F (written ϕ ∈ Φq,r,F ) if there exists a constant C such that the
inequality

‖f (q)‖ ≤ ϕ(t) ||f || +
C

t
‖f‖r (4)

holds for each t > 0 and f ∈W r
∞(F ).

This definition can be applied only to perfect subsets of R since otherwise
f with ‖f‖ = 0, ‖f (q)‖ = 1 violates (4) for each ϕ.

Clearly, Φq+1,r,F ⊂ Φq,r,F ⊂ Φq,r+1,F .
Of course, each (q, r)-Kolmogorov-Landau function, even of optimal growth,

is not unique and can be replaced by 0 on interval [0, t0] for any t0 given
beforehand.

Thus, given F, q, and r, we first get the problem of finding the minimal
growth of ϕ in (4), and then, given ϕ, we get the problem of minimization of
C in (4). Any function realizing the minimal growth will be denoted by ϕq,r,F .

3. Linear Topological Invariants

The condition (4) is closely related to interpolating linear topological invariants
of D1- or DN -type.

Let X be a Fréchet space with an increasing sequence of seminorms
(‖ · ‖p)

∞
p=0. Generalizing the class (d1) of Dragilev [5], Zahariuta introduced in

[19] the class D1 of Fréchet spaces satisfying the condition

∃p ∈ Z+ ∀q ∈ N ∃r ∈ N, C > 0 : ‖ · ‖2
q ≤ C‖ · ‖p ‖ · ‖r.
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Independently, Vogt [17] considered this as the Dominating Norm Property,
and proved that the existence of a dominating norm characterizes (in the class of
nuclear Fréchet spaces) the subspaces of the model space s of rapidly decreasing
sequences.

As a generalization, the following linear topological invariants were suggested
to classify spaces of infinitely differentiable functions:

DNϕ ([18, 16]) : ∃ p ∀q ∃r, C > 0 : ‖ · ‖q ≤ ϕ(t) ‖ · ‖p +
C

t
‖ · ‖r, ∀t > 0

and

Dϕ ([6]) : ∃ p ∀q ∃r, m > 0, C > 0 : ‖ · ‖q ≤ ϕm(t) ‖ · ‖p +
C

t
‖ · ‖r, ∀t > 0.

Note that the main difference between (4) and (DNϕ), provided ‖ · ‖0 is
a dominating norm in W∞

∞ (F ) is that in our case the function ϕ essentially
depends on the pair (q, r), whereas in (DNϕ) this function must be the same
for all pairs (q, r(q)). In Examples 3 and 4 below we use arguments from [7],
[8], and [6] with more careful control on the function ϕ.

4. Examples

Example 1. For F = R, due to A. N. Kolmogorov, the function ϕq,r,R(t) =
tq/(r−q) and the constant C defined in (2) give the sharp inequality (4). Indeed,
Kolmogorov’s inequality is realized on the Euler splines (er) (see e.g. [13] or
[4] for the definition of Euler’s splines). Moreover, the spline er realizes (1) for

all q with 1 ≤ q ≤ r − 1. Since ‖e
(k)
r ‖ increases with k (see e.g. [13, L. 7]), we

have ‖er‖r = ‖e
(r)
r ‖ and sharpness of (4). Thus, (4) is indeed a generalization

of (1).

Also, Kolmogorov’s inequality implies that W∞
∞ (R) has the property (DNϕ)

for ϕ(t) = tε with any ε > 0 given beforehand.

Example 2. Let F = [0, 1]. Then, as above, ϕq,r,[0,1](t) = tq/(r−q) gives
the minimal growth (see e.g. [4, T. 2.5.6]), but the exact value of C for the
sharp inequality (1) is not known.

In the case of infinitely connected set F we have to specify the class W r
∞(F ).

We will consider differentiability in the Whitney sense, that is f ∈ W r
∞(F ) if

there exists a function f̃ ∈ W r
∞(R) such that f̃ (k) = f (k) on F for 0 ≤ k ≤ r.

Then a topology of a Banach space in W r
∞(F ) can be determined by the norm

||| f |||r = ‖f‖r + sup
{ |(Rryf)(k)(x)|

|x− y|r−k
: x, y ∈ F, x 6= y, k = 0, 1, . . . , r

}

,



A. Goncharov 121

where Rryf(x) is the Taylor remainder. Thus, in the next example we replace
‖f‖r in (4) by ||| f |||r.

In [8] two interpolating lemmas were used for functions from Cr and,
correspondingly, Er classes (Lemma 1 is well-known, see [4, Theorem 2.5.6]).
The same proof can be applied to functions from W r

∞ class and to any closed
set in the second case, so we get

Lemma 1. Let I be any closed interval in R with length(I) = δ0 and let

0 ≤ q ≤ r be given. Then there exist two constants C1, C2 such that

∀f ∈W r
∞(I) ∀δ ∈ (0, δ0] ∀x ∈ I : |f (q)(x)| ≤ C1 δ

−q‖f‖ + C2 δ
r−q‖f‖r.

Lemma 2. Let F ⊂ R be a closed set containing r + 1 distinct points

x0, . . . , xr such that x0 < x1 < · · ·xr and h := x1 − x0 ≤ x2 − x1 ≤ · · · ≤
xr − xr−1 =: H. Let f ∈W r

∞(F ), 0 ≤ q ≤ r. Then

|f (q)(x0)| ≤ C3 h
−q‖f‖ + C4H

r−q|||f |||r,

where C3 and C4 depend only on k and r.

One can use a technique from [8] in order to construct a set F with any
growth of ϕq,r,F , which is given beforehand.

Example 3. Suppose 1 ≤ q ≤ r − 1 are given and ϕ ∈ Φ satisfies the
conditions

22q(r−q)tq ≤ ϕr−q(t) for all t > 0, (5)

∀C ∃t0 : Cϕ(t) ≤ ϕ(Ct) for t ≥ t0. (6)

Let us construct a set F such that ϕ ∈ Φq,r,F , whereas ϕ1 /∈ Φq,r,F for each
function ϕ1 with

ϕ1(Ct)/ϕ(t) → 0 as t→ ∞ for any fixed C. (7)

Let us take bn = 2−n, ln = ϕ−1/q(2n(r−q)), In = [bn − ln, bn], and F =
{0} ∪

⋃∞

n=1 In. The condition (5) gives bn − ln < bn, so the set F is well
defined. Moreover, this condition implies hn ≥ 2−n−2, where hn denotes the
distance between In and In+1.

To show that ϕ1 /∈ Φq,r,F for ϕ1 satisfying (7), let us consider

f(x) =

{

(x− bn)
q/q!, for x ∈ In,

0, for x ∈ F \ In.

Then ‖f‖ = lqn/q!, ‖f (q)‖ = 1, and ||| f |||r = 1 + hq−rn . If ϕ1 ∈ Φq,r,F , then
there would exists a constant C such that

1 ≤ ϕ1(t)
1

q!
ϕ−1(2n(r−q)) +

C

t
2(n+2)(r−q)
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for all t > 0. But this is impossible for t = 2C 2(n+2)(r−q) and large n in view
of (7).

To prove that, thanks to (6), ϕ ∈ Φq,r,F , it is enough to find constants A,B
such that the inequality

|f (q)(x)| ≤ Aϕ(t)‖f‖ +
B

t
|||f |||r (8)

holds for each f ∈W r
∞(F ), x ∈ F , and t > 0.

Given large t (let t > 2r(r−q)), fix n with

2qn ≤ ϕ(t) < 2q(n+1). (9)

We have n ≥ r + 2 because of (5).
For any fixed f ∈ W r

∞(F ) we consider separately the different locations of
x ∈ F . Suppose first that x ≤ bn. Let us take x1 = bn−1, x2 = bn−2, . . .,
xr = bn−r, and use Lemma 2 with x0 = x. Here, h ≥ bn−1 − bn = 2−n,
H = 2−(n−r+1), so |f (q)(x)| ≤ C3 2nq‖f‖+C42

−(r−q)(n−r+1) |||f |||r. Combining
(5) and (9) we get (8) with A = C3 and B = C4 2(r−q)(r−2).

Suppose now that x ∈ Ik with k = n − 1, n − 2, . . . , k0, where k0 is such
that

2(k0−1)(r−q) < t ≤ 2k0(r−q).

Then we take x1 = bk−1, . . . , xr = bk−r. Due to the choice of t we have
k0 ≥ r + 1 and k − r ≥ 1. Therefore, now h ≥ 2−k, H = 2−(k−r+1) and
as above, h−q ≤ 2(n−1)q < ϕ(t) and Hr−q ≤ 2−(r−q)(k0−r+1) ≤ 2(r−q)(r−1)/t.
Thus we get (8) with A = C3 and B = C4 2(r−q)(r−1).

It remains to consider the case x ∈ Ik with k < k0. Let us show that the
length of Ik for such k is large enough in order to apply Lemma 1. We will use
it with δ = lk0−1:

|f (q)(x)| ≤ C1 l
−q
k0−1‖f‖ + C2 l

r−q
k0−1‖f‖r.

Here, l−qk0−1 = ϕ(2(k0−1)(r−q)) < ϕ(t) due to the choice of k0. On the other hand,

lr−qk0−1 < 2q−r/t. Indeed, 2r−q t ≤ 22(r−q) 2(k0−1)(r−q) ≤ ϕ(r−q)/q(2(k0−1)(r−q)),

by (5). The latter value is just lq−rk0−1.
Gathering all the cases considered, we get (8) with A = max{C1, C3} and

B = max{C2 2q−r, C4 2(r−q)(r−1)}.

The set F from Example 3 is, in a sense, a one-dimensional analog of a
sharp cusp on the plane. Clearly, for functions of two variables we have to take
max{‖f (q1,q2)‖ : q1 + q2 = q} instead of ‖f (q)‖ on the left part of (4). On the
other hand, since the set in the next example is Whitney regular, we can return
to (4) in its initial with respect to ‖ · ‖r form.

Example 4. Let ψ : [0, 1] → [0, 1] be a nondecreasing function with the
properties:

ψ(0) = 0; 0 < ψ(τ) ≤ τ for 0 < τ < τ0 < 1; ψ(τ) = ψ(τ0) for τ0 ≤ τ ≤ 1.
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Let Fψ = {(x, y) : 0 ≤ x ≤ 1, |y| ≤ ψ(x)}.
Let us show that ϕ ∈ Φq,r,Fψ , provided that

∀C ∃ τ1 : ψq(τ) · ϕ(τ q−r) ≥ C for τ < τ1, (10)

whereas ϕ1 /∈ Φq,r,Fψ for every function ϕ1 such that for any fixed C

ψq(τ)ϕ1(Cτ
q−r) → 0 as τ → 0. (11)

If, in addition, ϕ ∈ Φ satisfies (6), then (10) can be relaxed to

∃τ1 : ψq(τ)ϕ(τ q−r) ≥ 1 for τ < τ1.

If, in this case, we take ψ(τ) = ϕ−1/q(τ q−r), then (11) coincides with (7).
Suppose that ϕ1 satisfies (11). Given 0 < τ < 1, let us take a non-increasing

function gτ ∈ C∞[0, 1] such that

gτ (x) =

{

1, for 0 ≤ x ≤ τ/2,

0, for x ≥ τ,

and |g
(k)
τ (x)| ≤ Akτ

−k for 1 ≤ k ≤ r, 0 ≤ x ≤ 1 with A1 ≤ A2 ≤ · · · ≤ Ar.
Then for fτ (x, y) = yq/q! · gτ (x) we have ‖fτ‖ ≤ ψq(τ)/q!, max{‖f (q1,q2)‖ :
q1 + q2 = q} ≥ f (0,q)(0, 0) = 1, and ‖fτ‖r ≤ Ar τ

q−r. Therefore,

1 ≤ ϕ1(t)
ψq(τ)

q!
+ C Ar

τ q−r

t
,

which is impossible for t = 2C Arτ
q−r in view of (11).

Suppose that ϕ satisfies (10). Let us show that there are constants A,B
such that for all q1, q2 with q1 + q2 = q, f ∈W r

∞(Fψ), and (x, y) ∈ Fψ we have
for all t > 0

|f (q1,q2)(x, y)| ≤ Aψ−q(1/t)‖f‖ +B tq−r ‖f‖r. (12)

By (10), this yields the desired result.
Given t, we define

F tψ = {(x, y) ∈ Fψ : x ≥ 1/t}, ‖f‖(t) = sup{|f(x, y)| : (x, y) ∈ F tψ}.

Fix f ∈ W r
∞(Fψ) and t > max{2, (1 − τ0)

−1}. As in [6], we will realize the
following plan:

1) an estimation of ‖f (0,k)‖(t) for 1 ≤ k ≤ q;
2) an estimation of |f (0,k)(x, y)| for x < 1/t in terms of ‖f (0,k)‖(t) and ‖f‖r;
3) a general bound of |f (q1,q2)(x, y)|.

For 1) let us consider the function h(y) = f(x, y), where x ≥ 1/t is fixed.
Lemma 1, applied to h with δ = 2ψ(1/t) gives

‖f (0,k)‖(t) ≤ C1 (2ψ(1/t))−k‖f‖ + C2 (2ψ(1/t))r−k‖f‖r.
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2) Let 0 ≤ x < 1/t. We use the Taylor expansion around (1/t, y) for the
function h(x) = f (0,k)(x, y), where y with |y| ≤ ψ(x) is fixed:

f (0,k)(x, y) =

r−k
∑

j=0

f (j,k)(1/t, y)
(x− 1/t)j

j!
+Rr−k1/t h(x).

Here, |Rr−k1/t h(x)| ≤ 2‖h‖r−k t
k−r ≤ 2‖f‖r t

k−r. Now, in order to estimate

|f (j,k)(1/t, y)| for j > 0 we apply Lemma 1 to h ∈ W r−k
∞ [1/t, 1] at the point

x = 1/t with δ = 1/t:

|f (j,k)(1/t, y)| ≤ C1 t
j ‖f (0,k)‖(t) + C2 t

j+k−r ‖f (0,k)‖r−k.

From here,

|f (0,k)(x, y)| ≤
(

1 + C1

r−k
∑

j=1

1

j!

)

‖f (0,k)‖(t) +
(

2 + C2

r−k
∑

j=1

1

j!

)

tk−r ‖f‖r.

3) To get (12), for any q1, q2 with q1 + q2 = q, we apply Lemma 1 to
h(x) = f (0,q2)(x, y) from the space W r−q2

∞ [a, b]. Here, b − a ≥ 1 − τ0, so, due
to the choice of t, one can take δ = 1/t:

|f (q1,q2)(x, y)| ≤ C1 t
q1 ‖f (0,q2)‖ + C2 t

q1+q2−r ‖f‖r.

Finally, a combination of the bounds from 1) and 2) together with ψ(1/t) ≤ 1/t
gives the desired conclusion.

Remark. Due to Stein ([15, Theorem 2], see also [4, Theorem 5.7.4]), the
‖ · ‖Lp(R)-version of the Kolmogorov inequality holds as well for functions from
W r
p (R) with 1 ≤ p < ∞. It should be noted that the Hilbert case (p = 2) was

considered by Hardy et al. in [10]. One can suggest the corresponding class
Φq,r,p,F of functions satisfying the ‖ · ‖Lp(R)-version of (4). It is interesting to
compare Φq,r,p,F and our class Φq,r,∞,F in the case when F is the closure of a
domain where the Sobolev embedding theorem is not valid, for example as in
Example 4 above with a small function ψ.
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